Какие же объективы нужны среднестатистическому фотографу?
Разумеется, вы можете проигнорировать все наши советы, которые мы приведём ниже, однако во избежание лишних трат мы всё же рекомендуем прислушаться.
Для начала, если вы не профессиональный фотограф со специфическими запросами, мы не рекомендуем вам покупать макро-объективы и фиш-ай. Во-первых, хорошее макро снимать очень сложно. Во-вторых, на любительском уровне гораздо дешевле купить макро-кольца и прикрутить их к любому объективу. Они никак не влияют на качество снимка, так как не содержат оптики вообще, однако удлиняя так называемый «рабочий отрезок» способствуют тому, что снимать можно располагая объект очень близко к объективу. Какой-нибудь даже 35-миллиметровый объектив с макрокольцами в любительских условиях вполне может заменить дорогущий макро-объектив.
Что касается фиш-ая, то его специфическая дисторсия уже никого не удивляет. У таких снимков, на самом деле, мало художественной ценности, и разве что в руках гениального мастера такой объектив может раскрыться.
Также не стоит тратиться на телеобъектив. Часто люди покупают такие объективы, чтобы, как им кажется, снимать горы или птиц/самолёты, однако нужен действительно немалый опыт в фотографии, чтобы картинка с телеобъектива в результате не казалась плоской и бесцветной. Впрочем, если вы и правда планируете часто снимать самолёты, то без телеобъектива действительно будет сложно.
Сверхширокоугольные объективы – тоже штука хоть и необычная, но без понимания области использования практически бесполезная. Такие объективы используются при съёмке зданий – причём, как внутри, так и снаружи. Они позволяют запечатлеть как можно больше геометрического пространства в одном снимке, но в качестве постоянного и универсального объектива они не годятся, хотя интересные пейзажи с их помощью сделать можно.
Что точно нужно купить – хотя бы один светосильный (f/1,8 или даже f/1,4, но не хуже, чем f/2,0) фикс-объектив. В идеале, чтобы его ЭФР находилось в диапазоне 35-55 мм. Такой объектив не только идеально подойдёт для уличной фотографии, но может вообще стать универсальным и заменит всё остальное. Дело в том, что картинка с объектива в этом диапазоне фокусного расстояния примерно соответствует тому, что видят ваши глаза. Конечно, у глаз человека зрение панорамное из-за того, что зрачок постоянно сканирует пространство, а не смотрит в одну точку, как объектив фотоаппарата. Однако снимки с такими ФР и проще просчитать заранее, «увидеть кадр», и они производят большое впечатление на зрителей – они как бы видят события своими глазами.
Кадр, снятый с фокусным расстоянием 35 мм
Учитывая, что такие объективы показывают обычно очень резкую картинку, то на фотоаппарате с разрешением от 16 Мп и выше у вас даже будет запас для кадрирования. То есть, из снимка на 35-миллиметровый объектив можно будет вырезать середину практически без ущерба для качества изображения, эмулируя таким образом телеобъектив.
Если вам позволяют средства, мы рекомендуем также купить светосильный зум-объектив, но не теле. Диапазона от 24 до 55 мм ЭФР хватит для большинства ситуаций (а для портретов можно взять «фикс» с ЭФР 75 мм или более)
Стоит обращать внимание на объективы с постоянной светосилой на всём диапазоне фокусных расстояний, обычно это f/2,8, но бывают и более дешёвые f/4
Самые же дешёвые зум-объективы обычно характеризуются переменной максимальной светосилой, в зависимости от фокусного расстояния. Это обозначается, например, так: 18-55/f3,5-5,6. Здесь 18-55 – диапазон фокусных расстояний, а 3,5-5,5 – диапазон светосилы. При этом, f/3,5 достижима только на ФР 18 мм. Такие объективы тоже покупать не стоит, обычно они идут в комплекте с фотоаппаратом (кит-объективы) – и этого достаточно.
System Options
Fixed-lens outliers aside, most photographers buying into full-frame will go with an interchangeable lens camera. And before you settle in on a particular camera, you should make sure it’s part of a system that will meet all of the challenges you face as a photographer.
Canon has two full-frame systems available. Its well-established SLR series uses the EF lens mount and offers cameras ranging from entry-level to professional. In 2018 it added the EOS R mirrorless family, which uses the RF mount, but can also use EF lenses via an inexpensive adapter. We’ve yet to see a true pro-grade R camera, though the first batch of lenses included a couple that pros will adore—the 28-70mm f/2 and 50mm f/1.2.
In addition to its iconic M rangefinder series, Leica launched its own mirrorless system, with autofocus, in 2015 with the SL camera. It lived in its niche for a few years, but that changed at the 2018 Photokina conference. Leica announced that Panasonic and Sigma were joining it to form the L-Mount Alliance. Panasonic has released three models so far, and Sigma is bringing one to market soon.
Like Canon, Nikon has two full-frame systems. You can opt for an SLR, which uses the F-mount, and the mirrorless Z-mount system, launched in 2018. Nikon offers SLRs ranging from entry-level to fully professional. Its Z system skips the bottom end of the market, but the two available models are suited for all but the most demanding sports and action photography.
Pentax is an iconic SLR brand, but doesn’t give owners much choice when it comes to full-frame cameras. It’s released two—the K-1 and K-1 Mark II—and the Mark II’s upgrades are minimal.
Sony technically has two systems, but its A-mount SLR series is all but dead. We don’t recommend it to new users, although the a99 II offers plenty of appeal for photographers with a heavy investment in glass.
It’s Sony’s mirrorless E-mount system that has been the focus of development efforts, and it shows. After a full five years on the market, the company has delivered models tuned for high-speed action, high-resolution capture, and for video. There are loads of lenses available, both first- and third-party, and Sony continues to sell older models with reduced pricing, broadening the appeal for entry-level buyers. It’s the most mature of all the full-frame mirrorless systems.
РАЗМЕРЫ МАТРИЦ И КРОП-ФАКТОР ФОТОТЕХНИКИ
В современных системных зеркальных и беззеркальных фотокамерах применяется всего три стандарта матриц различного размера. В них легко разобраться.
Полнокадровые матрицы. Имеют физический размер 36х24 мм, то есть равны по размерам кадру с 35-мм пленки. На такие фотоаппараты рассчитано большинство современных объективов. И на них они могут раскрыть весь свой потенциал. Поскольку матрица таких фотоаппаратов равна по размерам пленочному кадру, то и понятие кроп-фактора и ЭФР для таких аппаратов не нужно.
Матрицы формата APS-C. Имеют физический размер 25,1х16,7 мм и кроп-фактор 1,5. Такая матрица незначительно меньше полнокадровой, но зато значительно дешевле. Подобные матрицы иногда называют “кропнутыми” (обрезанными). Такой размер матриц используют почти все производители цифровых зеркальных фотоаппаратов. Среди современных аппаратов матрицы APS-C имеют камеры Nikon D3300, Nikon D5300, Nikon D5500, Nikon D7100. С ними по-прежнему можно использовать полнокадровую оптику, однако, все объективы будут значительно сильнее “приближать”, что не всегда удобно, ведь некоторые объективы рассчитаны на сугубо определенный вид съемки и потеря ими нужного угла обзора не позволяет их использовать по назначению. Прежде всего это касается широкоугольной, портретной и репортажной оптики. Полнокадровая широкоугольная оптика теряет свое главное достоинство — большой угол обзора; портретные полнокадровые объективы на “кропе” начинают слишком сильно приближать, и на них становится сложно снимать, приходится очень далеко отходить. Например, установив классический портретный объектив с фокусным расстоянием 85 мм на кропнутую камеру, придется отойти от фотографируемого человека на 5-7 метров, чтобы снять хотя бы портрет по пояс. Полнокадровая репортажная оптика (прежде всего зум-объективы с фокусным расстоянием 24-70 мм) получает на кропе неудобные углы обзора, не очень подходящие на практике для быстрой, динамичной репортажной съемки.
Чтобы создать подходящие для этих задач объективы, для “кропа” выпускают специально разработанные объективы. В системе Nikon такие объективы маркируются буквами “DX” в названии. Поскольку такие объективы рассчитываются для использования на меньшей по размеру матрице, они и сами становятся компактнее и дешевле своих полнокадровых собратьев.
Важно иметь в виду, что на DX-объективах (рассчитанных на камеры с матрицей APS-C) указывается реальное, а не эквивалентное фокусное расстояние
По этой же причине они не смогут корректно работать на полнокадровых матирцах. Что будет, если установить “кропнутый” объектив на полнокадровую камеру? В отличие от фотоаппаратов Canon, у Nikon есть такая возможность. В таком случае будет получаться очень сильное затемнение по краям кадра. Кстати, современные полнокадровые аппараты Nikon могут распознавать “кропнутую” оптику в случае ее установки, они автоматически обрезают кадр до размеров матрицы APS-C. Такую настройку можно включить или выключить в меню камеры.
Nikon CX — формат матриц для беззеркалок семейства Nikon 1. Физический размер — 13,2х8,8 мм. Имеют кроп-фактор 2,7. Столь небольшая матрица обеспечивает всей системе компактность. Для нее разрабатывается своя оптика: она компактна и практична. Через специальный переходник (Nikon FT-1) на камерах Nikon 1 можно использовать и объективы для полнокадровых и APS-C аппаратов.
Через переходник Nikon FT-1 можно устанавливать объективы от зеркалок на фотокамеры семейства Nikon 1.
У других производителей встречаются матрицы и других размеров, а значит и с другим кроп-фактором. Например, широко известен стандарт матриц micro 4/3, используемый сразу несколькими производителями. Этот стандарт имеет кроп-фактор 2. Это не очень крупные матрицы, со всеми вытекающими плюсами и минусами. Камеры, оборудованные такими матрицами компактны, как и разработанная для них оптика. Однако, аппаратам с таким сенсором очень сложно тягаться в качестве изображения с полнокадровыми аппаратами — площадь матрицы различается в четыре раза.
«Портретные» объективы: фокусное расстояние и перспектива
Небольшое лирическое отступление
Важное правило, которое должен усвоить каждый фотограф, звучит так: фокусное расстояние объектива определяет только его поле зрения. Которое, в свою очередь, никак не влияет на передачу на фотографии перспективы
Характер перспективы, то есть соотношения размеров между объектами на снимке, определяется только расстоянием от фотоаппарата до них, но никак не величиной ФР объектива.
Чтобы снять один и тот же объект в равном масштабе на широкоугольный объектив, фотограф вынужден подойти к нему ближе. Но при этом изменится и характер передачи перспективы.
(Фото: http://berniesumption.com)
Поэтому не верьте, когда вам говорят, что «широкоугольным объективом нельзя снимать портреты из-за искажений». Искажения, о которых идет речь, возникают не из-за широкого угла зрения, а из-за того, что фотограф, стараясь взять крупный план, подошел к своей модели слишком близко. На деле же «снимать портреты шириком» очень даже можно – нужно только отойти подальше и включить в композицию туловище, а иногда и ноги модели.
А вот фотографировать лица людей с расстояния ближе 2 метров (а лучше 3-5), действительно, обычно не стоит. Пропорции лица при этом искажаются, нос и щеки становятся больше, уши – меньше, и выглядит это обычно гротескно и малопривлекательно.
На снимке слева ошибка не в том, что выбран широкоугольный объектив, а в том, что взят слишком крупный план с близкого расстояния. На снимке справа ошибка исправлена – фотограф отошел от модели, но из-за того вынужден использовать более длиннофокусный объектив. (Фото: http://www.flickr.com/photos/crazytallblond/1196701508/)
И еще одна ремарка. Фокусное расстояние (focal distance) новички иногда путают с минимальной дистанцией фокусировки (МДФ, MDF, minimum focusing distance). Несмотря на некоторую схожесть в русскоязычных терминах, эти две величины никак не связаны между собой. ФР определяет угол зрения, а МДФ – насколько предельно близко может находиться объект к фотоаппарату, чтобы получиться резко на снимке.
Многие фотографы используют широкоугольные объективы и их особенности для портретов – но не классических, а креативных, нестандартных.
(Фото: http://leggnet.com)
Кроп фактор и фокусное расстояние
Как писалось выше, меньшая матрица зафиксирует и меньшее изображение. Будет впечатление, что изменился угол обзора объектива. А это важная характеристика любого объектива.
Так вот получая меньшее изображение из-за уменьшенной матрицы (влияние кроп фактора), получаем уменьшение угла обзора. А в объективе взаимосвязаны между собой угол обзора и фокусное расстояние (ФР).
Вот и получается, что вместе с углом обзора мы изменили и фокусное расстояние. Но фокусное расстояние это характеристика объектива, а с ним никаких действий и не производили. Поэтому для согласования измененного угла обзора и неизменённого ФР ввели понятие эквивалентного фокусного расстояния. Оно получается умножением реального фокусного расстояния объектива на кроп-фактор фотокамеры и обозначается Fэкв (ЭФР).
Эквивалентное фокусное расстояние показывает, какой объектив нужен камере с полнокадровой матрицей (24х36 мм), что бы снимок был с теми же границами (углом обзора), какой получился на кропнутой камере с данным объективом.Например, если взять три фотоаппарата:
- Полнокадровая матрица 24х36 мм (crop 1), объектив ФР 50 мм
- Матрица APS-C 15х23 мм (crop 1,6), объектив ФР 30 мм
- Матрица 1/1,8 дюйма (crop 4,9), объектив ФР 10мм
И сделать снимок одного объекта с одинакового расстояния, то границы снимка (угол обзора) будут одинаковы, потому что эквивалентное фокусное расстояние будет одинаковым ЭФР=ФР×К.
Поэтому сравнивая объективы по фокусному расстоянию, особенно если они стоят на разных фотокамерах, нужно сначала найти эквивалентное ФР и потом делать сравнение. Такое сравнение нужно проводить, когда вы выбираете объектив для разных сюжетов (портрет, пейзаж, макросъемка и др.). Для разных ситуаций нужно разное фокусное расстояние.
При сравнении различных объективов по эквивалентному фокусному расстоянию, если они стоят на разных фотоаппаратах, нужно их реальные фокусные расстояния, указанные на самом объективе, умножить на кроп фактор фотоаппарата, на котором стоит объектив. Полученные значения эквивалентного фокусного расстояния можно сравнивать и делать выводы.
В таблице приведены значения эквивалентного фокусного расстояния в зависимости от Crop-фактора.
Например, есть первый объектив с фокусным расстоянием 18-55мм, и стоит он на фотоаппарате с кроп-фактором 1,53. Определив эквивалентное фокусное расстояние, получаем значение 28-84мм. И есть другой объектив с фокусным расстоянием 5,4-16,2 мм и стоит он на фотоаппарате с кроп-фактором 6,56. Определяем эквивалентное фокусное расстояние (ЭФР) и получаем 35-106мм.
Сравнив два объектива можно сказать, что более широким углом зрения обладает первый объектив (28<35), а второй обладает большим длиннофокусным положением (106>84). Реальное фокусное расстояние, то есть расстояние от линзы до сенсора, не меняется (линз в объективе не одна и написано про расстояние для понимания процесса). Меняется угол обзора, ведь применение большей матрицы приводит к растягиванию изображения на полный кадр. В результате на фото видно, что объект стал крупнее, но это произошло не из-за изменения реального фокусного расстояния, а из-за изменения угла обзора.
Но это только сказано о границах изображения, а качество фотографий будет разное, потому что матрицы и объективы разные.
Используя объективы на камерах с разным кроп фактором, и эквивалентное фокусное расстояние будет разным, а это надо обязательно учитывать.
Что же происходит с изображением в кадре при смене матрицы?
На верхнем рисунке видно, что полноразмерная матрица засвечивается полностью проекцией изображения. А на нижнем рисунке часть проекции остается за кадром маленькой матрицы.
Получатся, что часть изображения теряется за краями кропнутой матрицы, значит угол обзора становится меньше. Это уменьшение видимого угла является ОТНОСИТЕЛЬНЫМ. Относительным потому, что уменьшение вызвано не оптической системой объектива. И при этом масштаб изображения не увеличивается. Например, объектив с ФР=50 обеспечивает угол обзора 46 градусов, а потери проекции за матрицей уменьшают его примерно до 32 градусов. Но такой угол обзора в 32 градуса дает объектив с ФР=75 и масштаб увеличения у него больше, чем у полтинника. Поэтому ФР=75 является ОТНОСИТЕЛЬНЫМ для «полтинника».
Можно сделать вывод, что кропнутая матрица засвечивается от центральной части проекции изображения. Этим фактом воспользовались производители объективов и стали выпускать линзы заточенные под кропнутую камеру. Они уменьшили диаметр стекол. Пересчитали радиус кривизны линз с учетом допустимой нормы разрешения по краям, чтобы изображение проецировалось всем диаметром линз на всю матрицу, а ФР оставили прежним. Объективы стали непригодны для ФФ камер, изготавливаются из пластмассы, но при этом потеряли в весе и цене. Таким образом вышеперечисленные неудобства c потерей угла обзора сохранились по наследству от старых стекол. Что касается объективов с переменным фокусным расстоянием, то все о чем говорилось выше в полной мере справедливо для них.
Подведем итоги
Из вышесказанного можно сделать следующие выводы:
- Фокусное расстояние объектива, например с ФР=50 не увеличится до ФР=75, а будет считаться относительным, поскольку увеличение фокусного расстояния привело бы к увеличению масштаба, но этого не происходит в кадре. Здесь нужно понимать только то, что изображение в кадре на ФР=50 получится обрезанным по краям в сравнении с пленочным кадром.
- Все рекомендации в книгах по применению ФР для определенных жанров справедливы и для кропнутой матрицы. Например, портрет рекомендуется снимать объективом с ФР=70-135мм. Изображения будут сопоставимы, за исключением обрезки кадра на кропнутой матрице, но при условии одинаковых расстояний от камер до объекта и величины диафрагмы. Разница в расстоянии скажется на не одинаковом отображении перспективыективы в кадре.
- Разрешение изображения со «старыми» объективами будет выше на кропнутой матрице, чем с объективами предназначенными для маленькой матрицы, т.к. проекция с центральной части линз имеет наибольшее разрешение.
- Реальный угол обзора объектива не уменьшится. Здесь более корректно говорить об уменьшении относительного угла, как следствие вытекающего из-за потерь изображения за пределами матрицы.
- Боке изображения не изменится.
- Перспектива изображения не изменится. Вообще на перспективу основное влияние оказывает расстояние от объектива до объекта. Перспективу нужно искать ногами, приближаясь и удаляясь от него. Чем мы ближе приближаемся к объекту, тем больше искажается линейная перспектива. Ближний план кажется все больше, а задний удаляется и наоборот. Если мы будем стоять на месте и крутить зум, то мы будем изменять масштаб изображения. Часто можно услышать мнение о том, что короткофокусные объективы сильнее подчеркивают искажения перспективы, а длиннофокусные наоборот лишают его пространственности. Эти факты правильные, если их отнести к определенным случаям съемки. Поэтому главная задача в формировании перспективного рисунка, это найти необходимое расстояние до объекта съемки.
- ГРИП — глубина резко изображаемого пространства не изменится. На нее влияют три основных параметра: ФР, величина диафрагмы и расстояние до объекта.
- Если для съемки полноростового портрета полтинником в комнате банально не хватает места и вы решили заменить его объективом с ФР=35, чтобы уменьшить масштаб, то помните, что размытие фона он будет делать хуже «полтинника», поскольку с уменьшением ФР глубина резко изображаемого пространства увеличивается, при том же значении диафрагмы и расстояния до объекта.
- При сравнении двух фотографий снятых шириком с ФР=10 на полнокадровую матрицу и кропнутую, можно заметить в первом случае больше заворотов (искажений) по краям и она кажется более объемной. Дело в том, что эти искажения возникают на краях стекол, которые «съедает» меньшая матрица. Остальная часть изображения, что ближе к центру ничем отличаться не будет.
- Все о чем говорилось выше, в полной мере относится к зум объективам.
Благодарю за терпение всех, кто дошел до этой строки.
4) Эквивалентное фокусное расстояние
Теперь перейдем к термину «эквивалентное фокусное расстояние», который, многие фотографы неправильно понимают. Слово «эквивалент» обычно относится к 35-мм пленке. Понимаете, во времена 35-мм пленки фокусное расстояние объектива всегда было таким, как указано на этикетке.
Но пришли цифровые камеры. И у них, датчик, который захватывает изображение, часто намного меньше, чем размер кадра 35мм плёнки. Это в первую очередь связано с высокой стоимостью больших сенсоров. Это уменьшение размера сенсора приводит к обрезке изображения, процесс, который фотографы называют «кадрированием».
Интересно то, что изображение на самом деле не обрезается датчиком или камерой — просто больше не влезает в кадр. Взгляните на следующую иллюстрацию (красные стрелки показывают свет, попадающий в камеру):
Как видно из приведенных выше иллюстраций, 35-миллиметровые пленочные/сенсорные камеры захватывают большую площадь объектива, тогда как меньшие сенсоры (также известные как «кадрированные или кроп сенсоры») захватывают в основном центр
Обратите внимание, что на обоих рисунках свет попадает в камеру камеры точно так же, но меньший датчик может улавливать только лишь часть от попадающего света, в то время, как остальная часть, попадает за пределы сенсора камеры
Термин «кадрированный датчик» может сбивать с толку, поскольку «кадрирование» изображения часто связано с его обрезкой. Опять же, в этом случае нет резки — световые лучи от краев линзы просто выходят за пределы и не попадают на сенсор.
Производители знали об этом процессе «перерегулирования», когда разрабатывали сенсоры меньшего размера, поэтому они начали производить объективы, специально разработанные для камер с кадрированными сенсорами, чтобы удешевить их.
Nikon называет их «DX», а Canon — «EF-S». По сути, сам объектив меньше размером, и через него изначально проходит меньше света, чем на его больших аналогах. Поэтому, когда свет с меньшего объектива попадает на сенсор камеры, то на самом деле, света не так много теряется.
Думайте об этом как о правой части иллюстрации выше, за исключением того, что круг намного меньше. Очевидно, что такие объективы не работают так, как они должны работать на полнокадровых / 35-миллиметровых камерах — только половина сцены действительно попадает на датчик. Полнокадровые камеры Nikon запрограммированы на распознавание объективов DX и автоматически уменьшают разрешение изображения, в то время как объективы Canon EF-S вообще не работают с полнокадровыми камерами.
Как две камеры с разными размерами сенсора имеют одинаковое разрешение изображения? Например, и полнокадровый Nikon D700, и кадрированный сенсор Nikon D300s имеют 12,1 мегапикселей, но имеют сенсоры разного размера. Это связано с тем, что камера Nikon D300s имеет гораздо меньшие пиксели (и, следовательно, более высокую плотность пикселей) по сравнению с Nikon D700 — именно так 12,1 миллиона пикселей могут уместиться на матрице меньшего размера.
По сути, это означает, что меньшие датчики с меньшими пикселями в этом случае больше увеличивают центральную область объектива. Если объектив не очень высокого качества и не может отобразить мелкие детали, то изображения могут казаться менее резкими на уменьшенных сенсорах камер.
Вернемся к термину «эквивалентное фокусное расстояние». Я уверен, что вы видели, как производители заявляли что-то вроде «Объектив 28–300 мм имеет поле зрения, эквивалентное фокусному расстоянию 42–450 мм в формате 35 мм», что является правильным выражением.
Другие могут сказать что-то вроде «фокусное расстояние объектива эквивалентно 42-450 мм на датчике DX», что неверно. Как я показал выше, в отношении сенсора камеры фокусное расстояние объектива никогда не меняется — изменяется только поле зрения. По этой причине неправильно говорить что-то вроде «мой объектив 28–300 мм на моем Nikon D90 похож на объектив 42–450 мм».
Откуда берутся эти большие числа, такие как 42-450 мм? Давайте теперь посмотрим на кроп-фактор и на то, как на самом деле вычисляются эти «эквивалентные» числа.
От редакции сайта Vt-tech.eu
Автор данной статьи — Владимир Медведев. Статья была опубликована на личном сайте автора по адресу:vladimirmedvedev.com/dpi.htmlОднако, автор решил полностью переделать сайт и статья пропала.Статья очень хорошо и доступно раскрывает тему дифракции при высоких значениях диафрагмы, поэтому редакция сайта Vt-Tech никак не могла пройти мимо. Мы извлекли статью из архивов кэширующих сайтов и выложили здесь.
При экспорте статьи немного пострадали картинки: не все изображения из первоначальной статьи доступны.
Надеемся, что автор статьи не будет возражать против размещения её здесь.