Литые и шлифованные линзы
Способ производства оптических элементов объективов также оказывает влияние на качество изображений, которые они способны создавать. Существуют три основных способа производства, первый из которых – шлифование и полировка асферических линз. Процесс шлифовки и полировки стекла является трудоемким и дорогим, поэтому такие линзы встречаются только в профессиональных объективах. Canon использует такие элементы большого диаметра для своих объективов L-серии чтобы обеспечить высокую разрешающую способность при падении света под любым углом.
Элементы следующего уровня – это литые асферические линзы, или в терминологии Nikon – линзы точной формовки (PGM). Стекло нагревается до такой степени, что может быть сформована асферическая поверхность. Это делается с помощью штампа или формы. Nikon утверждает, что высокая степень точности таких линз несомненна в связи с тем, что каждый элемент измеряется в микронах – это 1/1000 мм. Линзы этого типа менее дороги в изготовлении и, в следствии этого, могут быть найдены в объективах для продвинутых любителей и энтузиастов.
Третий из наиболее распространенных методов изготовления оптических элементов – это гибрид из стеклянной линзы, покрытой асферическим пластиком для придания формы. Эти линзы чувствительны к изменениям окружающей среды, таким как влажность и температура и потому не очень подходят для профессионального применения и используются в любительской технике.
РАЗМЕРЫ МАТРИЦ И КРОП-ФАКТОР ФОТОТЕХНИКИ
В современных системных зеркальных и беззеркальных фотокамерах применяется всего три стандарта матриц различного размера. В них легко разобраться.
Полнокадровые матрицы. Имеют физический размер 36х24 мм, то есть равны по размерам кадру с 35-мм пленки. На такие фотоаппараты рассчитано большинство современных объективов. И на них они могут раскрыть весь свой потенциал. Поскольку матрица таких фотоаппаратов равна по размерам пленочному кадру, то и понятие кроп-фактора и ЭФР для таких аппаратов не нужно.
Матрицы формата APS-C. Имеют физический размер 25,1х16,7 мм и кроп-фактор 1,5. Такая матрица незначительно меньше полнокадровой, но зато значительно дешевле. Подобные матрицы иногда называют “кропнутыми” (обрезанными). Такой размер матриц используют почти все производители цифровых зеркальных фотоаппаратов. Среди современных аппаратов матрицы APS-C имеют камеры Nikon D3300, Nikon D5300, Nikon D5500, Nikon D7100. С ними по-прежнему можно использовать полнокадровую оптику, однако, все объективы будут значительно сильнее “приближать”, что не всегда удобно, ведь некоторые объективы рассчитаны на сугубо определенный вид съемки и потеря ими нужного угла обзора не позволяет их использовать по назначению. Прежде всего это касается широкоугольной, портретной и репортажной оптики. Полнокадровая широкоугольная оптика теряет свое главное достоинство — большой угол обзора; портретные полнокадровые объективы на “кропе” начинают слишком сильно приближать, и на них становится сложно снимать, приходится очень далеко отходить. Например, установив классический портретный объектив с фокусным расстоянием 85 мм на кропнутую камеру, придется отойти от фотографируемого человека на 5-7 метров, чтобы снять хотя бы портрет по пояс. Полнокадровая репортажная оптика (прежде всего зум-объективы с фокусным расстоянием 24-70 мм) получает на кропе неудобные углы обзора, не очень подходящие на практике для быстрой, динамичной репортажной съемки.
Чтобы создать подходящие для этих задач объективы, для “кропа” выпускают специально разработанные объективы. В системе Nikon такие объективы маркируются буквами “DX” в названии. Поскольку такие объективы рассчитываются для использования на меньшей по размеру матрице, они и сами становятся компактнее и дешевле своих полнокадровых собратьев.
Важно иметь в виду, что на DX-объективах (рассчитанных на камеры с матрицей APS-C) указывается реальное, а не эквивалентное фокусное расстояние
По этой же причине они не смогут корректно работать на полнокадровых матирцах. Что будет, если установить “кропнутый” объектив на полнокадровую камеру? В отличие от фотоаппаратов Canon, у Nikon есть такая возможность. В таком случае будет получаться очень сильное затемнение по краям кадра. Кстати, современные полнокадровые аппараты Nikon могут распознавать “кропнутую” оптику в случае ее установки, они автоматически обрезают кадр до размеров матрицы APS-C. Такую настройку можно включить или выключить в меню камеры.
Nikon CX — формат матриц для беззеркалок семейства Nikon 1. Физический размер — 13,2х8,8 мм. Имеют кроп-фактор 2,7. Столь небольшая матрица обеспечивает всей системе компактность. Для нее разрабатывается своя оптика: она компактна и практична. Через специальный переходник (Nikon FT-1) на камерах Nikon 1 можно использовать и объективы для полнокадровых и APS-C аппаратов.
Через переходник Nikon FT-1 можно устанавливать объективы от зеркалок на фотокамеры семейства Nikon 1.
У других производителей встречаются матрицы и других размеров, а значит и с другим кроп-фактором. Например, широко известен стандарт матриц micro 4/3, используемый сразу несколькими производителями. Этот стандарт имеет кроп-фактор 2. Это не очень крупные матрицы, со всеми вытекающими плюсами и минусами. Камеры, оборудованные такими матрицами компактны, как и разработанная для них оптика. Однако, аппаратам с таким сенсором очень сложно тягаться в качестве изображения с полнокадровыми аппаратами — площадь матрицы различается в четыре раза.
Какой светосильный объектив выбрать
В целом оптика с высокой светосилой делится на 2 типа: фиксы и объективы с переменным фокусным расстоянием.
Фиксы отлично подходят для студийной съемки, где можно легко менять расстояние до объекта, перемещаясь по залу. А модель при этом статична. Фиксированные объективы хороши качеством картинки. В их конструкции меньше оптических элементов, что уменьшает число искажений.
Новички чаще всего выбирают оптику с фиксированным фокусным расстоянием от 50 до 55 мм, имеющих светосилу от 2.8 до 1.4. Такие объективы еще называют «полтинниками». Их можно найти в линейках всех самых известных производителей фототехники. Этих параметров вполне достаточно, если у фотографа нет стремления заниматься предметной или ночной съемкой.
На втором месте по популярности фиксы с фокусным расстоянием 30 и 35 мм. Они относятся к широкоугольным и подходят для большого количества задач. Но при этом они слегка деформируют перспективу, что неблагоприятно отражается на портретной съемке.
Те, кто специализируется на крупно плановых портретах, предпочитают фиксы с фокусным расстоянием 85 и 135 мм. А чем больше фокусное расстояние оптики, тем больше эффект боке.
Среди стекол с переменным фокусным расстоянием наиболее популярны модели с фокусным расстоянием 17-55 мм. Добавив к ним оптику с расстоянием 70-200, можно уверенно снимать качественные репортажи. При наличии конечно же навыков репортажной съемки.
Какая оптика считается светосильной
Светосильные объективы еще называют быстрыми и светлыми. К этому типу оптики относятся модели, в которых максимально открытая диафрагма (f) начинается от 2.8. Например, Sigma 17-50mm F2.8. Диафрагма может открываться еще шире, как в портретных фиксах Nikon 50mm F1.4G.
Существуют и суперсветосильные объективы. Например, Nikon 50mm F1.2 MF.
При этом новичкам стоит учитывать, что лучше не открывать диафрагму до максимума, указанного на оптике. Например, при указанной f1.4 рабочая светосила начинается примерно с f1.8 и даже f 2.0. А при показателях f1.4 не совсем четким может оказаться даже главный объект в кадре.
От каких факторов зависит светосила?
К матрице проходит не всё количество потоков света. Значение светосилы показывает величину ослабления световых волн, когда они пройдут через диафрагму.
Кристально прозрачных стекол не бывает, даже стеклянные линзы самого высокого качества не совсем прозрачны. Малая толика светового потока, проходя через стекло, распадается на мельчайшие частицы с преломлением в различных ориентирах. Остальные части поглощаются линзой, которая изготовлена из стеклянных или пластиковых материалов высокого качества и прозрачности. Именно поэтому ослабляются потоки света, проходящие через оптические линзы.
Световая сила также зависит от отверстия диафрагмы. Через более широко открывающийся диафрагменный зрачок проходит большее количество волн света. Параметры светосилы можно высчитать. Нужно сопоставить диаметральное значение раскрытого до упора диафрагменного отверстия и фокусного расстояние. Меньшее число указывает на более высокую светосилу объектива.
Диафрагма
Одна из главных характеристик, на которые обращают внимание фотографы при выборе объектива – это максимальная диафрагма, поскольку она определяет потенциал объектива в плане глубины резкости и работы в условиях слабого освещения. Диафрагма обозначается в виде дроби с фокусом в числителе и стопами в знаменателе и означает размер зрачка (открытой диафрагмы) объектива, который пропорционален квадрату фокусного расстояния объектива
Например, 50мм объектив может иметь максимальную диафрагму f/1.2, но объективу с фокусным 100 мм потребуется в 4 раза большее отверстие для получения такой диафрагмы. Так что светосила объектива определяется не только диаметром отверстия, а зависит от фокусного расстояния.
Также необходимо учитывать, что 50 мм объектив имеет более широкое поле зрения и, следовательно, ему проще пропустить больше света. Большие телеобъективы компенсируют это очень большим диаметром переднего элемента, что в свою очередь приводит к увеличению сферических аберраций, для борьбы с которыми и обеспечения резкости изображений требуются дополнительные группы линз, а это существенно удорожает производство.
Боке
В фотографии термином боке называют способ отображения объективом расфокусированного света. Это наиболее заметно на небольших фоновых бликах, которые часто выглядят на фотографиях в виде световых кружков. Каждый объектив имеет разное боке в зависимости от его конструкции. Термином боке часто неправильно описывают малую глубину резкости с резким объектом на сильно размытом фоне. На самом деле этот термин относится лишь к тому, как выглядит зона нерезкости.
Способность объектива корректировать сферические аберрации способствует боке, поскольку дает светлым пятнам увеличиваться в размерах при удалении от фокуса с равномерным распределением света по кругу. Профессиональные объективы имеют великолепные возможности уменьшения искажений света через комбинацию групп элементов.
Однако наибольшее влияние на боке оказывает конструкция ирисовой диафрагмы. Важнейшим фактором является количество лепестков диафрагмы, что позволяет делать отверстие более округлым, создающим более привлекательное для глаза боке.
Профессиональные объективы как правило имеют больше лепестков и потому создают лучшее боке, как изображено на фотографии ниже, где сравниваются боке объектива Canon EF 50mm слева и более приятное боке объектива Canon L 24-105mm справа.
Конструктив объектива
На рубеже XIX и XX веков компанией Цейс был создан целый ряд объективов, ставших стандартами конструктива на многие годы. Их оптические схемы используются и сегодня с немного модернизированным дизайном.
Планар (Planar)
Объектив Планар изобрел сотрудник Carl Zeiss Пол Рудольф, в 1896 году. Его шестиэлементный симметричный дизайн имел диафрагму f/4.5 и создавал чрезвычайно резкое изображение, но страдал засветкой в результате большого количества переходов воздух-стекло, на сегодняшний день решенной просветляющими покрытиями. Самый знаменитый Планар –пожалуй 110мм f/2.0. Он был популярным выбором для владельцев среднеформатных камер Hasselblad серий 2000 и 200.
Тессар (Tessar)
Тессар – еще один объектив, разработанный Полом Рудольфом во время работы на Цейс. Впервые представленный в 1902, Тессар получил название от греческого слова, означающего четыре, благодаря конструкции из четырех элементов. С оригинальной диафрагмой f/6.3, Тессар был компактным объективом, обеспечивающим высокое оптическое качество по доступной цене. Многие 50мм объективы построены на его оптической схеме.
Соннар (Sonnar)
Соннар появился чуть позже и был запатентован Цейсом в 1929 году. Его разработчиком был доктор Людвиг Бертеле. Первый Соннар был 50мм объективом, состоящим из пяти элементов и предназначенным для дальномерок Zeiss Contax. Его название происходит от немецкого слова «Sonne», означающего «солнечный», благодаря диафрагме f/1.5.
Соннар смог победить конструктивные недостатки предыдущих объективов, предлагая лучшую контрастность и меньшие засветы, чем Планар и гораздо лучшую диафрагму, и меньшие хроматические аберрации, чем Тессар.
Максимальное увеличение (Г max)
Максимальное увеличение телескопа ограничено диаметром объектива.
Принято считать, что Г max=2*D, но из-за поправок на искажения, точности изготовления и настройки, лучше немного занизить эту величину:
Гmax = 1,5*D, где D — диаметр объектива или главного зеркала (апертура).
А если труба окажется способна на большее — пусть это лучше сюрпризом будет, чем наоборот…
Используя линзу Барлоу, можно поднять максимальное увеличение телескопа в разы, но в итоге вы получите всего-лишь размытое пятно больших размеров и никаких дополнительных деталей.
Есть, правда, другой подход: немного более крупные размеры часто позволяют лучше расмотреть тот же объект,
несмотря на то, что деталей на нём не прибавится. Наверное поэтому и советуют обычную формулу: Г max=2*D. То есть, это зависит от объекта и вашего вкуса…
Нормальные объективы, или реалистичные
Нормальные объективы — это объективы, обеспечивающие реалистичное представление действительности в кадре. Искажение перспективы с таким объективом минимальное. Нормальным считается объектив, фокусное расстояние которого равно диагонали кадра. Угол зрения нормального объектива составляет 50-55°, что приблизительно соответствует среднестатистическому углу зрения человеческого глаза.
Одним из главных преимуществ нормальных, или реалистичных объективов является их универсальность и большая светосила. Зачастую, именно реалистичные объективы обладают большой апертурой, что позволяет максимально открыть отверстие диафрагмы и получить больше света.
Фокусное расстояние нормального объектива составляет 50 мм, если речь идет о съемке с пленочным фотоаппаратом, или фотоаппаратом с полноформатной матрицей. На фотокамерах с кропнутыми матрицами фокусное расстояние реалистичного объектива составляет 25-50 мм, в зависимости от значения кроп фактора.
Благодаря своей универсальности, нормальные объективы применяются в различных видах съемки, и, в принципе, могут стать основным предпочитаемым объективом в работе. Однако, наибольшей популярности такой вид оптики получил в портретной съемке. Благодаря оптимальному углу зрения и большой светосиле, реалистичные объективы обеспечивают наиболее привлекательные результаты.
ЗУМЫ И ФИКСЫ
Объективы делятся на две категории: с постоянным фокусным расстоянием и с переменным.
Объективы с переменным фокусным расстоянием, или зумы, хороши своей универсальностью. Меняя фокусное расстояние объектива, мы меняем и его угол обзора. Одним и тем же объективом мы можем снимать как общие планы, так и более удаленные объекты. Говоря простым языком, такие объективы умеют “приближать-отдалять”. Зумы из-за своей универсальности получили широкое распространение.
Примеры зум-объективов:
Nikon AF-S DX Nikkor 18-55mm f/3.5-5.6G VR — недорогой, но универсальный зум-объектив, который часто поставляется в комплекте с фотоаппаратом. Так называемый “китовый” объектив.
Nikon AF-S 24-70mm f/2.8G ED — профессиональный зум-объектив. Славится прекрасным качеством изображения и мощной, надежной конструкцией.
Но есть у них и недостатки. Часто в угоду универсальности приносится в жертву качество изображения. Светосила зумов тоже как правило невелика по сравнению с объективами с фиксированным фокусным расстоянием. Фикс-объективы (дискретные объективы, фиксы) имеют постоянное, не изменяемое фокусное расстояние. А это значит, что они не могут менять угол обзора, не могут “приближать-отдалять”. Зато у них масса других плюсов. Главный из них — прекрасное качество изображения. Также фикс-объективы могут иметь очень высокую светосилу, недоступную для зумов: F1.4 и даже более.
Один из самых популярных фикс-объективов для зеркалок Nikon со светосилой F1.4:Nikon AF-S 50mm f/1.4G Nikkor
Для системы Nikon 1 был выпущен объектив со светосилой F1.2! Nikon 1 32mm f/1.2 Nikkor
Сверхсветосильный объектив F1.2 с ручной фокусировкойNikon MF 50mm f/1.2 Nikkor
Значение диафрагмы
Для обозначения диафрагмы пишут в маркировке объектива дробь с буквой F, например, F/8 вместо числа 8. Могут записать диапазон диафрагмирования кроме светосилы. Типичная запись значений диафрагмы для цифровых мыльниц F/2-F/8. Такую запись не нужно путать со значением светосилы и со значением фокусных расстояний (буква F обозначает не фокус). Диафрагма равняется отношению ФР к размеру отверстия диафрагмы. Что бы больше света прошло через объектив нужно сделать отверстие диафрагмы больше, а значит, показатель диафрагменного числа будет меньше. Чем меньше диафрагменное число, тем больше света пройдет через объектив.
Светосильные объективы для nikon и canon: что это такое светосила объектива и f число?
Любой объектив характеризуется той или иной светосилой. Под этим параметром понимают степень ослабления объективом попадающего в него светового потока. На светосилу влияет прозрачность линз, диаметр раскрытия диафрагмы и некоторые другие характеристики оптики. Но если вы придете в магазин электроники и спросите у продавца о светосиле того или иного объектива, то получите странный ответ. Человек вам просто назовет максимальное значение диафрагмы. Дело в том, что в наш век повсеместного упрощения люди начинают подразумевать под светосилой именно величину диафрагмы. Этот урок расскажет вам как раз о диафрагме. Мы постараемся объяснить, зачем при съемке нужно этот параметр регулировать и на что он влияет.
Группы, элементы и какое это имеет значение
Каждый объектив состоит из отдельных линз, называемых «элементы». Смысл использования многих элементов в том, чтобы уменьшить аберрации, чтобы изображение было лишено недостатков.
Линзы различных размеров и форм сгруппированы вместе чтобы по-разному преломлять свет различной длины волн и позволять свету сводиться, и, таким образом, уменьшать аберрации. Представьте себе прохождение света через призму, когда он входит под одним углом, преломляется стеклом, и затем выходит в другом направлении.
Каждый стеклянный элемент различной формы по-разному преломляет свет, что позволяет дизайнерам объективов управлять прохождением света. Группировка элементов, складывание линз различной формы одна на другую, дает возможности лучшего контроля света и уменьшения искажений.
Типы элементов
Большинство линз имеют изогнутую поверхность и называются сферическими поскольку они соответствуют небольшому участку поверхности сферы. Исторически они были недороги и просты в изготовлении простым шлифованием, но их конструкция допускает искажения световых волн и приводит к несовершенствам изображения.
Эти дисторсии уменьшены в более высококачественных объективах с использованием асферических линз, о которых я расскажу позже.
Апохроматические (APO) элементы используются в основном в телеобъективах. Длиннофокусные объективы особенно восприимчивы к хроматическим аберрациям, которые приводят к снижению контрастности и резкости изображений. Апохроматический элемент сводит свет трех цветов – зеленый, синий и красный в одной плоскости, что снижает искажения.
Топовые объективы также содержат «плавающие» внутренние элементы, перемещающиеся в зависимости от фокусного расстояния чтобы уменьшить кривизну поля, вызывающего потерю резкости по краям кадра.
Стабилизация
Ну и последнее. Стабилизатор в фотографии – штука не лишняя, особенно если вы снимаете в темноте или на телеобъектив. Чем больше выдержа или фокусное расстояние, тем заметнее любое колебание. На сегодняшний день стабилизатор используется почти везде, однако есть нюансы. Во-первых, многие фикс-объективы лишены стабилизатора – это позволяет и удешевить их и упростить оптическую схему. Во-вторых, например у Olympus стабилизатор используется только в самой камере. Объективы от этого производителя лишены стабилизатора. Если вы установите такой объектив на камеру другого производителя без стабилизатора, то лишитесь стабилизации вообще. Так что, перед покупкой камеры и объектива стоит заранее просчитать этот момент.
Предельная звёздная величина (m)
Предельная звёздная величина, которая видна в телескоп, в зависимости от апертуры:
m=2.1+5*lg(D), где D – диаметр телескопа в мм., lg — логарифм.
Если возьмётесь расчитывать, то увидите, что предельная звёздная величина,
доступная нашему глазу через самый большой «магазинный» телескоп с апертурой 300мм — около 14,5m.
Более слабые объекты ищутся через фотографирование и последующую компьютерную обработку кадров.
D, мм | m | D, мм | m | |
---|---|---|---|---|
32 | 9,6 | 132 | 12.7 | |
50 | 10,6 | 150 | 13 | |
60 | 11 | 200 | 13,6 | |
70 | 11,3 | 250 | 14,1 | |
80 | 11,6 | 300 | 14,5 | |
90 | 11,9 | 350 | 14,8 | |
114 | 12,4 | 400 | 15,1 | |
125 | 12,6 | 500 | 15,6 |
На деле значения будут немного отличаться из-за разницы световых потерь в разных конструкция телескопов.
При одинаковой апертуре D, выше всего предельная звёздная величина в линзовых телекопах-рефракторах.
В зеркальных рефлекторах потери выше — очень грубо можно отнять 10-15%.
В катадиопртиках потери самые большие, соответственно и предельная звёздная величина самая маленькая.
Также велики потери в биноклях из-за наличия нескольких преломляющих призм — их я имел ввиду, дав диаметры 32 и 50 мм.
То есть, в биноклях предельная звёздная величина будет гораздо меньше табличной. На сколько — зависит от качества марки бинокля, в частности от качества просветляющего покрытия всех поверхностей — это нельзя предсказать для всех моделей.
Сложные и дорогие окуляры тоже задерживают свет за счёт большего количества линз — неизбежная плата за качество изображения
(хотя, их качественные просветляющие покрытия частично снижают этот недостаток).
То есть, при одинаковой апертуре, в линзовый телескоп-рефрактор с самым простеньким окуляром вы увидите максимум возможного при данном D.
Но, поскольку, рефракторы больших диаметров дороги, то за те же деньги можно взять гораздо более апертуристый рефлектор и увидеть значительно больше.
Покрытие линз
Возможно вы не знали, но обычно линзы теряют часть света из-за отражения от поверхностей. В некоторых случаях каждый элемент может терять порядка 5% света, в результате чего количество света, попадающего в объектив с 10 элементами будет уменьшено примерно на 50%.
Покрытия линз были разработаны для уменьшения отражений света и облегчения прохождения света через линзы. Примерно так же, как покрытие на солнцезащитных очках отражает часть спектра света, позволяя остальному свету проходить к вашим глазам.
Материалы, такие как фторид магния и моноксид кремния, используют в качестве покрытий в виде очень тонких слоев на поверхности, причем каждая линза обычно покрывается несколькими слоями чтобы уменьшить отражения световых волн различных частей спектра.
Например, самые лучшие из линз Canon имеют более 10 слоев покрытий, что обеспечивает светопропускание на уровне 99.9% в диапазоне от ультрафиолетового до ближнего инфракрасного света.
Искажения и аберрации
В идеальном мире объектив должен отображать любую прямую линию как идеально прямую. Однако в реальности любой объектив, имеющие изогнутые поверхности, не способен сводить параллельные лучи в одной точке, так что они искажаются и искривляются. Эта кривизна является особенностью любого объектива сконструированного из сферических элементов, но она может значительно отличаться в зависимости от конкретного объектива и используемого фокусного расстояния.
Это искажение наиболее заметно при работе с параллельными линиями и объектами, расположенными у края кадра, где эффект максимален. Большинство зум-объективов страдают «бочковыми» искажениями на широком конце, когда в середине изображения образуется «выпуклость».
Они также могут быть подвержены «подушечным» искажениям на длинном конце, которое является противоположным случаем и сопровождается «втягиванием» изображения в центре. Тем не менее, как правило существует некое среднее положение зум-объектива, в котором прямые линии окажутся прямыми и которое несомненно стоит найти!
Искажение зависит не только от объектива. Оно также варьируется в зависимости от вашей близости к объекту съемки. Для ландшафтных и архитектурных фотографов искажения объектива – серьезная проблема, поскольку они хотят получать изображения с прямыми линиями и правильными пропорциями. В то же время портретные фотографы обычно не работают с прямыми линиями и поэтому искажения для них не так страшны.
Большинство производителей оптики сегодня создают объективы с использованием асферических элементов, созданных для уменьшения искажений и аберраций. В отличие от сферических линз, асферические имеют изогнутую поверхность, способную исправить аберрации. Это достигается благодаря тому, что свет, проходящий через линзу, собирается в одной точке, так что единственный поток света попадает на матрицу, что уменьшает искажения, вызываемые прохождением через линзу нескольких лучей.
На иллюстрации ниже представлены 2 фотографии, которые я недавно снял на свадьбе, при этом изображение слева покрыто бликами и искажениями света, а на правом получилось теплое свечение.
Светосила объектива.
Светосила — показатель переменный, т. к. между линзами объектива помещена диафрагма, которая изменяет диаметр светового отверстия см. рис. Диафрагма состоит из нескольких дугообразных лепестков (ламелей), помещенных в оправу, имеющую снаружи специальное кольцо. На оправу объектива часто выносится шкала значений относительных отверстий, на которой указываются только знаменатели дробного числа, называемые диафрагменными числами (для упрощения мы их называем диафрагмой), см. рис.4.
Рис.4. Условное изображение диафрагмы и диафрагменные числа на кольце диафрагмы объектива.
Рис.5. На объективе верхняя шкала – шкала значений диафрагм. Верхнее кольцо – регулировка диафрагмы.
Показатели диафрагменных чисел стандартизованы и имеют значения в виде следующего ряда:
0,7; 1,0; 1,4; 2; 2,8; 4; 5,6; 8; 11; 16; 22; 32; 45 и 64.
Этот ряд подчиняется определенному закону, по которому при переходе от одного диафрагменного числа к соседнему количество пропускаемого объективом света изменяется в два раза.
Максимальное относительное отверстие обычно обозначается на оправе объектива (или в паспорте на объектив или фотоаппарат), например в виде такой надписи «2,8/50», где 2,8 — диафрагменное число, а 50 — фокусное расстояние объектива, выраженное в мм. Диафрагменное число максимального относительного отверстия часто называют светосилой объектива. По такой терминологии рассмотренный объектив имеет светосилу 2,8.
Фотолюбителям следует иметь в виду, что светосила объектива уменьшается, если съемка происходит на очень близком расстоянии (макросъемка) от объекта. Например при съемке в масштабе 1 1 светосила объектива уменьшается в четыре раза!
Это объясняется тем, что при приближении объектива к объекту плоскость изображения отодвигается от задней главной плоскости объектива и располагается на расстоянии, превышающем фокусное расстояние.
При съемке объекта в увеличенном масштабе светосила объектива понижается тем больше, чем крупнее масштаб изображения (чем ближе объектив к объекту). При расстояниях до объекта менее 10 фокусных расстояний в показатель светосилы должна быть внесена поправка: (1 + 1/М) .
В таблице 1 приведены коэффициенты, показывающие во сколько раз происходит уменьшение светосилы при фотографировании на дистанции от 10 до двух фокусных расстояний:
Таблица 1.
Иногда максимальное значение относительного отверстия не совпадает с предусмотренными в стандартном ряде, например: 1 1,5; 1 3,5; 1 4,5 и т.д
Если необходимо выяснить, насколько светосильнее будет объектив при диафрагме 3,5 по сравнению со следующим показателем диафрагмы, имеющим цифру 4, можно произвести следующий расчет: (1/3,5) 2 (¼) 2 = 1,3
Пользуясь подобным расчетом, можно сравнивать два объектива по светосиле.
Пути повышения светосилы объектива и качества изображения, получаемого с его помощью рассмотрены здесь.
https://youtube.com/watch?v=f26WSznWkZk