Обзоры и тесты, просто о сложном
Начинающие фотографы часто задаются вопросом, почему у них на фото с группой людей только кто-то один в фокусе, а остальные размыты. Или как сфотографировать школьный класс, чтобы все были резкими на фотографии. Вообще-то, для этого нужен опыт и много практики. Но если практики пока мало, а разобраться хочется, то на помощь придёт калькулятор ГРИП.
Всё дело в глубине резкости, которой обычно не хватает. Вот тут требуется лирическое отступление.
Резкость можно сформулировать математически, но тогда от неё не будет практической пользы, потому что с математической точки зрения глубина резко изображаемого пространства равна нулю. Только плоскость, на которой вы сфокусировались можно считать резкой, остальное будет не в фокусе, это следует из формул. Однако, все прекрасно понимают, что глубина есть и она ненулевая.
Математической резкости мы всё равно не получим из-за разнообразных аберраций, главным образом, сферической, ведь мы не с идеальной линзой имеем дело:
Из-за погрешностей объектива невозможно все параллельные лучи сфокусировать в одной точке, поэтому изображение будет слегка размытым даже для плоскости фокусировки. Хроматические аберрации тоже влияют на резкость, есть ещё масса и других искажений. Именно поэтому объективы такие большие и тяжёлые, особенности конструкции позволяют минимизировать большинство искажений.
К счастью, инженеры, разрабатывающие объективы, не прогуливали занятия в институтах и за годы исследований добились впечатляющих результатов. Особенно преуспели в этом ребята из Никона, чьи стёкла одни из самых резких. Благодаря им, резкость фотографии в последнюю очередь зависит от объектива. Резкость объектива как раз и определяется тем, насколько конструкция хорошо справляется с целой ордой аберраций.
Чтобы хоть как-то посчитать глубину резкости с учётом всех огрех оптической системы, придумали параметр, который определяет саму резкость – кружок нерезкости (CoC – Circle of Confusion). То есть, раз уж не можем получить точку, то изображение считается резким, если получили хотя бы кружок. Размер этого кружка исторически зависел от формата плёнки, точнее, от её разрешающей способности, которую измеряли экспериментально.
Далее все начали наносить шкалы глубины резкости на объективы кто во что горазд. У каждого производителя был свой “правильный” диаметр кружка нерезкости, потому что никто не знал, плёнку с каким разрешением вы засунете в фотоаппарат. Кэнон и Никон использовали значение 0,03мм на своих старых объективах. Чехарда со шкалой ГРИП прекратилась с наступлением цифровых камер, потому что всё ещё сильней запуталось. Если типов плёнки с разным разрешением было ещё не так много, то разрешающая способность камер менялась уже от одной модели к другой, так как разрешающая способность зависит не только от плотности пикселей, но от их конфигурации и обработки сигнала электроникой. Пока я пишу эту статью, наверняка вышло ещё несколько камер со своими уникальными кружками нерезкости.
Вот формулы, по которым считается ГРИП:
Резкость в кадре – что ее определяет
Для того чтобы понять, как увеличить резкость фотографии, можно провести маленький эксперимент. Нужно просто взять обычный лист белой бумаги и проделать в нем отверстие. А затем посмотреть через это отверстие на какой-нибудь определенный предмет, сначала приложив лист к лицу, а потом на определенном расстоянии. Наверняка то, что вы увидите с близкого расстояния, будет сильно отличаться от увиденного издалека. Вернее, даже будет отличаться не то, что вы увидите, а то, сколько. С максимально близкого расстояния вы четко увидите предмет и все, что его окружает. А вот при увеличении расстояния в поле зрения попадает только предмет, а о том, что его окружает мы можем только догадываться. А при еще большей удаленности нам удастся лишь различить отдельные детали. Однако, если мы захотим выделить и показать именно их, мы применим второй прием.
Таким образом, глубина резкости – это то расстояние между двумя точками, которое в кадре будет выглядеть детальным и отчетливым. И если мы снимаем предметы, которые находятся на разном расстоянии, лучше будет выглядеть тот, на который мы наведем объектив. Однако если оба предмета находятся в относительной близости друг от друга, они оба могут оказаться в кадре достаточно четкими. Это объясняется тем, что существуют границы, между которыми все, что попадает в кадр, будет иметь определенную значимость. Допустимое смещение относительно точной фокусировки, когда все изображение остается резким – это глубина резкости объектива.
Гиперфокальное расстояние[править | править код]
Гиперфока́льное расстоя́ние — расстояние от объектива до ближайшей границы резко изображаемого пространства, при наводке объектива на бесконечность.
В смысле наводки на объект, это расстояние соответствует значку «бесконечность» на шкале объектива, границе «начала бесконечности».
Если наводку на резкость делать по предмету, расположенному от объектива на гиперфокальном расстоянии, то резко изобразятся все объекты, лежащие от горизонта (фотографической бесконечности) до, примерно, половины гиперфокального расстояния, то есть глубина резко изображаемого пространства значительно увеличится в сторону фотоаппарата.
Гиперфока́льное расстоя́ние находят по формуле:
H=f2Kz+f,H=\frac{f^2}{Kz}+f, или
H=f2Kz,H=\frac{f^2}{Kz}, где
ff\! — главное фокусное расстояние;
KK\! — знаменатель относительного отверстия или просто ru: диафрагменное число;
zz\! — диаметр диска (пятна) нерезкости;
HH\! — гиперфокальное расстояние.
Первая формула подходит к обычным объективам, а к телеобъективам с большим фактором увеличения на заднем элементе, или, особенно зеркально-линзовым объективам, нужно применять вторую, к тому же более простую, формулу.
Что считать резким на фотографии? Кружок рассеяния
Мы уже знаем, что четкой границы между резкими и нерезкими областями кадра не существует. Это знание нам поможет понять, как вообще образуется глубина резкости изображаемого пространства.
Для простоты условимся, что мы будем фотографировать на идеально резкий объектив точки ничтожно малого диаметра, выложенные в ряд.
Тогда резкость в кадре распространяется следующим образом:
Идеально резкой будет лишь та точка, которая окажется ровно на дистанции фокусировки объектива. Точки, находящиеся перед или за дистанцией фокусировки, будут размытыми. На получившейся фотографии до определенного момента это размытие будет не заметно глазу наблюдателя. Однако потом точки начнут плавно превращаться в маленькие кружки, и наблюдатель начнет замечать нерезкость в кадре. Минимальный диаметр такого нерезкого кружа, заметного глазу, был назван “кружок рассеяния” (по английски — circle of confusion или сокращенно COC). Все точки диаметром меньше кружка рассеяния считаются на фотографии резкими. Все точки с большим диаметром считаются нерезкими.
В какой момент размытие становится заметным глазу? Тут всё зависит от наблюдателя. Поэтому глубина резкости — величина субъективная. Более зоркий и дотошный наблюдатель будет предъявлять к резкости снимка более высокие требования, чем менее искушенный. Но дело не только в наблюдателе. Многое здесь будет зависеть и от разрешения матрицы (или фотопленки). Покуда кружок рассеяния меньше размера пикселя на матрице фотоаппарата, все точки на фото будут одинаково резкими. И конечно же, очень много зависит от условия наблюдения. Если рассматривать маленькое фото, на нем мы увидим меньше деталей, чем на большом. Исходя из всех этих предпосылок, еще со времен фотопленки в качестве диаметра кружка нерезкости выступает величина в 30 микрон или 0,03 мм. На основе этой величины производители на некоторых объективах делают шкалу ГРИП типа этой:
Простая шкала глубины резкости на объективе Nikon 50mm f/1.4D AF Nikkor. Как ею пользоваться?
На шкале приведены значения диафрагм F11 и F16 с рисками (выделены желтым), над ними — шкала расстояний фокусировки (выделена синим). При фокусировке на определенную дистанцию мы увидим какие, расстояния окажутся между рисками шкалы глубины резкости. Они и будут говорить, в каких пределах будет распространяться ГРИП. Стоит оговориться, что на современных объективах всё реже делают такую шкалу, так как оценить ГРИП по ней можно только очень грубо.
Выбор объектива для камеры видеонаблюдения
Что еще влияет на выбор объектива?
При выборе объектива камеры видеонаблюдения нужно учитывать ряд факторов:
- дешевые широкоугольные объективы могут давать искажения по краям изображения – т.н. “дисторсию”, что ограничивает их применение для решения задач идентификации. Для их расчетов не подоходят калькуляторы объективов без базы данных по камерам.
- при использовании длиннофокусных объективов желательно учитывать глубину резкости – изображение будет “в фокусе” лишь на части зоны обзора
- при прочих равных – стоит отдавать предпочтение более “светосильным” объективам (F1.2 предпочтительнее F2.0)
Калькулятор объективов
Запустить калькулятор объективов.
Как пользоваться калькулятором объективов?
Шаг 1. Задаем характеристики области просмотра:
- расстояние до цели наблюдения
- высота цели наблюдения
- ширина зоны наблюдения в области цели наблюдения
Шаг 2. Задаем основные характеристики камеры и места ее установки:
- высоту установки камеры
- формат сенсора
- разрешение матрицы
- фокусное расстояние (уже задано расстоянием до цели и шириной зоны наблюдения)
Шаг 3. Проверяем выполнение критериев решения целевой задачи наблюдения:
- распределение плотности пикселей: численно выражено в правом окне Разрешение Цели в PPM (пикселях на метр) на расстоянии до цели наблюдения, графически – цветом зон наблюдения
- угол наклона камеры к горизонту
- величину “мертвой зоны” под камерой
В калькуляторе IPICA/ JVSG.com цвета DORI зон отображаются следующим образом:
- Красный – возможна идентификация людей (250 пикселей на метр по стандарту МЭК 62676-4)
- Желтый – возможно распознавание людей известных оператору (125 пикселей на метр)
- Зеленый – зона обзора (62 пикселя на метр)
- Бледно Зеленый – возможно детектирование людей (25 пикселей на метр)
- Синий – зона мониторинга. возможно определение скоплений людей (12 пикселей на метр)
Здесь можно почитать подробнее про расчет плотности пикселей.
Отобразить зоны камер в соответствии со своими собственными настройками пикселей на метр, добавить стены и другие препятствия, загрузить как подложку PDF или DWG файл и посчитать кабели можно в программе IP Video System Design Tool.
При необходимости возвращаемся к шагам 2 (меняем разрешение камеры или фокусное расстояние) или 1 (выбираем другое место установки камеры)
Шаг 4. Подбираем подходящую модель камеры:
- выбираем производителя
- подбираем модель с близкими к расчетным параметрами (при необходимости используем кнопку Фильтр с иконкой в виде воронки)
- оцениваем результат
При наведении мыши на опредленную модель или нажатии на экране смартфона кнопки с глазом можно получить подсказку калькулятора по основным параметром данной камеры. А нажав на кнопку около параметра модель откроется окно с подробными параметрами видеокамеры.
Рассчитать, смоделировать и подобрать камеры типа Fisheye с объективом “рыбий глаз”, а также мультисенсорные камеры можно в профессиональной программе для проектирования видеонаблюдения IP Video System Design Tool.
Запустить бесплатный калькулятор объектива.
Шаг 5. Согласовываем техническое решение:
- зоны обзора в двух плоскостях (сбоку и сверху)
- 3D зона обзора
- “вид с камеры”
Калькулятор фокусного расстояния | IP Video System Design Tool | Online-калькулятор архива видеонаблюдения
Открыть калькулятор объективов JVSG
Как пользоваться калькулятором ГРИП?
Вам нужно ввести параметры фотоматрицы и объектива, а затем нажать на кнопку «Построить таблицу». Столбцы таблицы соответствуют различным значениям диафрагмы, а строки – различным дистанциям фокусировки. Для каждой комбинации рассчитывается расстояние до ближней и дальней границ резко изображаемого пространства. В нижней строке таблицы указываются значения гиперфокального расстояния, соответствующие каждому из диафрагменных чисел.
Несколько замечаний касательно вводимых параметров:
Разрешение
Разрешение вашей фотокамеры в мегапикселях. Если камера позволяет снимать с разрешением меньше номинального, или если вы собираетесь уменьшить разрешение снимка при редактировании, то следует указать именно окончательное разрешение.
Кроп-фактор
Кроп-фактор указывает, во сколько раз матрица вашей камеры меньше полнокадровой матрицы. При использовании полнокадровой фотокамеры кроп-фактор будет равен единице.
Фокусное расстояние
Истинное фокусное расстояние вашего объектива. Не следует указывать эквивалентное фокусное расстояние, поскольку вы уже выбрали необходимый кроп-фактор и перерасчёт будет сделан автоматически.
Замечу также, что по мере увеличения фокусного расстояния целесообразность применения калькулятора ГРИП стремительно падает. Такого рода таблицы ориентированы, прежде всего, на широкоугольную оптику. Длиннофокусные объективы в принципе не предназначены для получения бесконечной глубины резкости.
Светосила
Минимальное число диафрагмы, т.е. максимальная величина относительного отверстия вашего объектива. Этот параметр не влияет на вычисления и нужен исключительно для выбора адекватного диапазона диафрагменных чисел. При использовании зум-объективов с переменной светосилой имеет смысл указать максимальную светосилу для выбранного ранее фокусного расстояния.
Диапазон дистанций фокусировки
При желании вы можете выбрать как нормальный диапазон (от 1 м), так и диапазон для съёмки крупных планов (от 10 см до 1м). Имейте, однако, в виду, что расчёт ГРИП для макросъёмки – занятие достаточно бессмысленное в силу крайне малой глубины резкости при близких дистанциях фокусировки. Данная опция присутствует здесь в иллюстративных целях.
Диаметр кружка рассеяния
По умолчанию размер кружка нерезкости равен диагонали пикселя матрицы. Таков мой личный стандарт. Тем не менее, вы вольны воспользоваться более традиционным подходом, согласно которому в основу вычислений кладётся не разрешение камеры, а длина диагонали кадра.
Дифракция
Большинство представленных в сети калькуляторов ГРИП не принимают дифракцию в расчёт, и это существенным образом снижает их точность. Настоящий калькулятор знает и о дифракции. При выборе опции «учитывать дифракцию» диафрагменные числа, превышающие дифракционно-ограниченное значение, будут выделены красным цветом, а в качестве диаметра кружка нерезкости для этих чисел будет использован диаметр соответствующего им диска Эйри. Таким образом, глубина резкости под влиянием дифракции хоть и будет возрастать, но лишь ценой падения общего разрешения. Обычно я стараюсь не закрывать диафрагму более чем на две ступени после дифракционно-ограниченной значения. Дальнейшее снижение резкости слишком сильно бросается в глаза.
***
Теперь можно перейти непосредственно к калькулятору.
На каких снимках требуется глубина резкости
В первую очередь – это портретная съемка. Чаще всего она базируется на соотношении передних объектов и размытого боке. Для таких фотографий отлично подходят длинные фокусные расстояния и широко раскрытые лепестки объектива. При этом фотограф должен соблюдать максимально точную фокусировку.
Для пейзажей рекомендуется использовать короткий фокус и апертуру в районе f/1.16 и менее. При этом, фокусировка должна охватывать около 1/3 от всего кадра. Такой подход позволяет максимально расширить площадь глубины резкости. Также приветствуется использование штатива для стабилизации фотокамеры при съемке на длинной выдержке. В иных случаях обязательно увеличивайте параметр ISO.
При макросъемке также требуется эффект размытого боке и максимальная резкость объекта, находящегося в фокусе. Здесь нужно тщательно выставлять настройки. Учитывайте, что даже самая маленькая диафрагма может дать миллиметровую глубину резкости при минимальном фокусном расстоянии.
Используйте обычные объективы с фокусным расстоянием в 50 миллиметров. Такие объективы лучше всего имитируют особенности нашего зрения. Это упростит процесс настройки композиции.
Видение глубины резкости.
Вот где начинается удовольствие. При измерении количества света, когда отверстие объектива расширяется и сужается, также измеряется глубина резкости. Опять-таки, ваши глаза делают то же самое!
Когда вы смотрите на монитор и читаете эту статью, все слова в основном в фокусе для ваших глаз. Периферическим зрением вы можете также видеть другие предметы, но они будут не в фокусе.
Заметьте, ваши руки на клавиатуре, они на переднем плане, и возможно книжная полка на заднем плане. Вы можете их видеть, но они не в фокусе. Вы видите глубину резкости.
Хорошая фотография делает именно это. Она захватывает передний план, середину и задний план. Задавая диафрагму, вы контролируете, какая из этих областей будет в фокусе. Все это зависит от вашего намерения, от вашей истории.
Шпаргалки для любителя
Для правильного выбора нужных параметров съемки существует экспонометр. Он позволяет новичку фотодела не особо задумываться над выбором экспопары. Выбрав определенный параметр диафрагмы или выдержки, второй определить мы можем с помощью проведенных расчетов. Таким образом, можно использовать опыт бывалых фотографов и при этом получать достаточно красивые снимки. Также существенно может помочь шкала глубины резкости, которая есть на многих объективах современных зеркалок.
Альтернативой такой шкале могут стать таблицы, содержащие ключевые настройки. Конечно, профессионалы говорят о том, что подобные таблицы позволяют добиться лишь минимально приемлемой резкости. Поскольку такие помощники не всегда способны учесть такие детали, как погодные условия, степень освещенности, подвижность модели и прочие. А это далеко не всегда дает возможность передать с помощью снимка творческий замысел фотографа. Поэтому их использование на первых порах, конечно, рекомендуется. Но книги и таблицы подбора значений далеко не всегда гарантируют получение шедевров.
Делаем резким всё до бесконечности. Гиперфокальное расстояние
Часто бывает нужно сделать так, чтобы весь кадр, от начала и до конца был резким. Особенно это необходимо в пейзажной, архитектурной, интерьерной фотографии. Фокусировка на бесконечность не поможет: при этом мы потеряем резкость на переднем плане. А ведь часто хочется резко показать и передний план, и сильно удаленный фон. Чтобы добиться максимальной глубины резкости, начинающейся как можно ближе к нам и охватывающей бесконечно далекие объекты, фотографы пользуются наводкой на гиперфокальное расстояние.
Гиперфокальное расстояние — это дистанция, при фокусировке на которую всё от ½ этой дистанции до бесконечности попадет в ГРИП.
Самое сложное в гиперфокальном расстоянии — его расчет. Но однажды рассчитав гиперфокал, вы сможете легко и быстро снимать любые пейзажи без предварительной фокусировки и расчета ГРИП, просто сфокусировав объектив на уже известное вам гиперфокальное расстояние. Как и глубина резкости, гиперфокальное расстояние будет зависеть от фокусного расстояния объектива и значения диафрагмы. Чем короче фокусное расстояние и чем сильнее закрыта диафрагма — тем ближе к нам будет находиться гиперфокал.
Фокусировка на гиперфокальное расстояние позволила мне сделать резким и камень на переднем плане, и далекие горы.
NIKON D810 / 18.0-35.0 mm f/3.5-4.5 УСТАНОВКИ: ISO 100, F14, 1/60 с
Все описанные выше калькуляторы ГРИП умеют рассчитывать и гиперфокальное расстояние. Пользоваться ими легко и удобно. При расчете гиперфокального расстояния будут справедливы всё те же замечания, касающиеся диаметра кружка рассеяния. Особенно удобно наводиться на гиперфокальное расстояние тогда, когда объектив оснащен шкалой дистанций фокусировки. Тогда можно просто вручную по шкале навестить на нужную дистанцию, как я всегда и делаю.
Nikon 12-24mm f/4G ED-IF AF-S DX Zoom-Nikkor
Nikon AF-S 16-35mm f/4G ED VR Nikkor
Nikon AF-S DX Nikkor 16–85 mm f/3,5–5,6G ED VR
Широкоугольный объектив со шкалой дистанций фокусировки — отличный выбор для пейзажной съемки.
Практические трудности в работе с гиперфокальным расстоянием заключаются в том, что шкала дистанций фокусировки даже на топовых современных объективах сильно редуцирована: она мала и по ней можно делать лишь ориентировочные оценки дистанции фокусировки. Тогда как для абсолютно точной наводки на гиперфокальное расстояние, порой требуется высчитывать расстояние не только в метрах, что позволяет сделать шкала, но и в сантиметрах.
Типичная шкала дистанций фокусировки широкоугольного объектива.
Широкоугольный объектив — пожалуй основной инструмент фотографа-пейзажиста. И именно при использовании широкоугольника в основном есть смысл пользоваться гиперфокальным расстоянием. Однако можно заметить, что на этой шкале между “бесконечностью” (а “бесконечность” может начинаться с десятков метров!) и фокусировкой на 1 метр, нет никаких обозначений. При фокусировке же на гиперфокал как правило приходится наводить объектив на 1,5 -2 метра. Точно сделать это, пользуясь данной шкалой, очень затруднительно.
Лично я для себя придумал решение этой проблемы. Это же решение поможет навести на гиперфокальное расстояние объектив, вообще не обладающий никакой шкалой фокусировки (китовый к примеру). На съемку я беру с собой обычную строительную рулетку. И когда мне надо навестить строго на определенную дистанцию, прислоняю ее к метке фокальной плоскости на камере и вытягиваю вдаль рулетку на рассчитанное перед этим расстояние гиперфокала. После этого можно наводиться на кончик рулетки — он будет находиться на необходимой дистанции. Разумеется, метод этот весьма экстравагантен и я им пользуюсь только в очень сложных ситуациях, когда глубину резкости нужно использовать действительно максимально точно. Есть и более простой способ: зная гиперфокальное расстояние, можно найти в кадре объект, находящийся приблизительно на этой дистанции и сфокусироваться на него.
Почему калькуляторы глубины резкости иногда врут? Кружок рассеяния и современные реалии
Частенько от пользователей вышеописанных программ приходится слышать, что программа выводит данные, несоответствующие действительности. На фото глубина резкости получается меньше, чем показала программа. Вся проблема в том, что калькуляторы ГРИП для расчетов обычно используют параметр кружка рассеяния 0,03 мм.
Во времена пленочной фотографии значения в 0,03 мм вполне хватало: пленка не обладала столь высокой детализацией (разрешением), как матрицы современных камер. Диаметр в 0,03 мм слишком велик для современных аппаратов. В кружок с таким диаметром войдет довольно много пикселей изображения, полученного с современной матрицы, а следовательно, такой кружок будет отчетливо виден и на фото.
Кружок рассеяния диаметром 0,03мм в сравнении с пикселями изображения разрешением 6000×4000точек (24мп), полученного с матрицы формата APS-C.
Как видите, в кружок нерезкости с диаметром 0,03 мм вошло довольно много пикселей изображения. Значит и на фото такой кружок будет выглядеть уже не точкой, а именно кружком. И на границах ГРИП, изображение будет заметно менее резким. Площадь одного пикселя мы получили простым делением площади матрицы на разрешение даваемых ею изображений. Разумеется, это лишь грубая оценка: один пиксель на матрице не дает одну точку на изображении: один пиксель на фотографии получается путем анализа данных сразу с нескольких пикселей на матрице. Кстати, поэтому на современных матрицах невозможна попиксельная детализация изображения — между точкой на изображении и физическими пикселями на матрице слишком сложные взаимоотношения.
Однако даже такая грубая оценка помогает понять суть проблемы: пленочные стандарты резкости на сегодня устарели и требуют корректировок. Особенно при условии использования качественной современной оптики, обеспечивающей высокую детализацию изображения. Особенно если вы снимаете на камеры с матрицами APS-C или более компактными: чем меньше матрица — тем меньше размер одного пикселя (чтобы всех их уместить на данной площади), следовательно даже маленький кружок рассеяния будет заметен. То же относится и к многомегапиксельным полнокадровым аппаратам типа Nikon D810, Nikon D800 и Nikon D800E с 36 мегапикселями на борту.
Сегодня для эффективного расчета ГРИП требуется пересмотр диаметра кружка нерезкости в сторону его уменьшения.
Как это выглядит на практике? При съемке этого натюрморта я уделил особое внимание расчету глубины резкости. Чтобы вся композиция “от и до” в нее попала
Для расчетов ГРИП я использовал диаметр кружка рассеяния 0,03 мм.
По идее, всё, что вошло в зону ГРИП, должно быть одинаково резким. Но какую картину мы будем наблюдать в реальности?
Желтым выделена область фокусировки, зеленым — зона, находящаяся на границе рассчитанной зоны ГРИП.
NIKON D810 УСТАНОВКИ: ISO 100, F11, 100 с, 85.0 мм экв.
Резкость в зоне фокусировки прекрасна! Спасибо связке Nikon D810+Nikon 85mm f/1.4D AF Nikkor
То, что находится на границах глубины резкости, четким назвать уже нельзя. Видно, что и поднос и дальняя часть букета сильно размыты.
Как же быть? Как рассчитать глубину резкости без ошибок? Для этого в расчетах глубины резкости я рекомендую использовать меньший диаметру кружка нерезкости. Опираясь на свой субъективный опыт, я выбрал диаметр в 0,015 мм. Кружок меньшего диаметра использовать уже не очень рационально: вряд ли вы столкнетесь с настолько резкой оптикой, которая будет снимать со столь высокой детализацией. Разумеется, чем меньше диаметр кружка рассеяния мы используем в расчетах — тем меньшую ГРИП получаем. Однако, такой расчет будет и более корректен.
В параметрах большинства калькуляторов ГРИП диаметр кружка рассеяния можно установить вручную. Пользуйтесь этой возможностью! Заметим, что если вы используете не слишком резкую оптику, например, объектив-гиперзум, то можно смело использовать в расчетах кружок рассеяния в 0,03 мм, так как большей резкости добиться не позволит объектив.
Так же стоит отметить, что по вышеизложенным данным может сложиться впечатление, что в таком случае на компактных фотоаппаратах должно получится лучше и сильнее размывать фон (а размытый фон — следствие малой ГРИП): ведь у них очень маленькие матрицы и на них большой кружок рассеяния будет заметен еще сильнее. Разочаруем: в компактах используется слишком короткофокусная оптика, поэтому глубина резкости все равно останется весьма значительной, какой бы кружок рассеяния в расчётах ГРИП мы ни использовали.
Определение глубины резкости.
С помощью точки фокусировки (тот маленький квадратик в середине видоискателя) вы фокусируетесь на определенной части сцены. Эта точка будет самой четкой на вашем изображении. Участок перед этой точкой фокусировки и позади нее будет тоже в фокусе. Расстояние между крайней передней и крайней задней точкой, которые находятся в фокусе, считается глубиной резкости. Вы сами решаете, какой она будет, выбрав определенный размер диафрагмы.
Это история об обезьяне на скале. Кусты на переднем плане и храм на скале на заднем плане не вошли в область фокусировки. Они вне глубины резкости
Это привлечет ваше внимание к точке фокусировки — обезьянке в середине
Помните, меньше диафрагменное число, больше открытие, больше света попадает в объектив. Это означает, что меньшая область вашей сцены будет в фокусе и у вас получится малая глубина резкости. Также верно обратное. Большее диафрагменное число, меньшее открытие, меньше света попадает в объектив. В этом случае практически вся сцена будет в фокусе, и вы получите большую глубину резкости.
Проще говоря, чем больше диафрагменное число, тем большая область будет в фокусе. Чем меньше диафрагменное число, тем меньшая область в фокусе.
Минимальная глубина резкости
Задача сведения глубины резкости к минимуму намного сложнее, чем сделать ее максимальной. Во многих камерах (в основном компактных) такое вообще практически невозможно из-за маленького размера матрицы, короткофокусного объектива по умолчанию и фокусировки путем поиска гиперфокального расстояния. Именно это и является один из самых сильных аргументов в пользу цифрового зеркального фотоаппарата – возможность сделать резкой ту часть сцены, которая необходима фотографу.
Размытие фона или каких-то элементов переднего плана позволяет сфокусировать внимание зрителя на основном объекте съемки, выделить его, является одним из ключевых творческих моментов и причиной явления боке (рис. 8,
Рис. 8 – Размытый передний план
Рис. 9 – Размытие заднего плана
Для достижения минимальной глубины резкости можно:
- использовать максимально открытую диафрагму (f1.2 – f1.8, f2.8) в зависимости от объектива;
- использовать длиннофокусные телеобъективы. Чем больше фокусное расстояние, тем меньше глубина резкости на изображении;
- подобраться как можно ближе к объекту съемки;
- по возможности, увеличить расстояние между фоном и объектом съемки.
Степень отсутствия резкости
Величина размытия изображения плавно изменяется вдоль глубины резкости. Абсолютно резким предмет изображается только в плоскости фокуса, все остальные точки начинают постепенно размываться по мере отдаления от этой плоскости.
Рис. 10 – Очень маленькая глубина резкости
Для достижения такой глубины резкости был использован макрообъектив с максимально открытой диафрагмой. Съемка проводилась со штатива максимально близко к объекту – монетке “5 копійок”.
Разъяснение: фокусное расстояние и глубина резкости
Заметьте, что я не упомянул фокусное расстояние как фактор, влияющий на глубину резкости. Даже несмотря на то, что телеобъективы казалось бы создают намного меньшую глубину резкости, это происходит преимущественно потому, что они часто используются для увеличения предмета, к которому нельзя подойти ближе. Если объект займёт идентичную площадь в видоискателе (постоянное увеличение) как на широкоугольном, так и на телеобъективе, глубина резкости будет практически независима от фокусного расстояния! Конечно, это потребовало бы от вас подойти намного ближе для широкоугольного объектива или заметно отдалиться для телеобъектива, как продемонстрировано в следующей таблице глубин резкости:
Фокусное расстояние (мм) | Дистанция фокусировки (м) | Глубина резкости (м) |
---|---|---|
10 | 0.5 | 0.482 |
20 | 1.0 | 0.421 |
50 | 2.5 | 0.406 |
100 | 5.0 | 0.404 |
200 | 10 | 0.404 |
400 | 20 | 0.404 |
Примечание: расчёты глубины резкости даны для диафрагмы f/4.0 на Canon EOS 30D(кроп-фактор 1.6) с использованием кружка нерезкости диаметром 0.0206 мм.
Обратите внимание, для минимальных фокусных расстояний действительно есть небольшое изменение, однако этот эффект незначителен по сравнению как с диафрагмой, так и с дистанцией фокусировки. Даже несмотря на то, что общая глубина резкости практически неизменна, доля глубины резкости впереди и позади дистанции фокусировки изменяется с фокусным расстоянием, как показано ниже:
Положение глубины резкости | ||
---|---|---|
Фокусное расстояние (мм) | Позади | Впереди |
10 | 70.2 % | 29.8 % |
20 | 60.1 % | 39.9 % |
50 | 54.0 % | 46.0 % |
100 | 52.0 % | 48.0 % |
200 | 51.0 % | 49.0 % |
400 | 50.5 % | 49.5 % |
Это показывает ограниченность традиционной концепции ГРИП: она принимает во внимание только сам диапазон и не учитывает распределение глубины относительно фокальной плоскости, несмотря на то, что оба фактора могут повлиять на восприятие резкости. Широкоугольные объективы обеспечивают большую глубину резкости за фокальной плоскостью, нежели перед ней, что существенно для традиционной пейзажной и ландшафтной съёмки
С другой стороны, при постоянных точке съёмки и дистанции фокусировки объектив с большим фокусным расстоянием даст меньшую глубину резкости (даже несмотря на существенные отличия в итоговом изображении). Это более наглядно в повседневном применении, но связано это со степенью увеличения, а не с дистанцией фокусировки. Кажется, что для больших фокусных расстояний глубина резкости снижается, — потому что они сжимают перспективу. Это располагает фон намного ближе к переднему плану — даже если детали не становятся более чёткими. Глубина резкости также кажется меньшей у зеркальных камер, чем у компактных цифровых камер, поскольку зеркальные камеры требуют большего фокусного расстояния для получения аналогичного угла обзора.
* Примечание: мы описываем глубину резкости как практически постоянную, поскольку существует ряд случаев, в которых это перестаёт быть истинным. Для дистанций фокусировки, приводящих к значительному увеличению, или в зоне около гиперфокального расстояния широкоугольные объективы могут обеспечить большую глубину резкости, чем телеобъективы. С другой стороны, для ситуаций большого увеличения традиционный расчёт ГРИП становится неточным по другой причине: . Это в действительности приводит к смещению ГРИП на большинстве широкоугольных объективов и увеличивает её для теле- и макрообъективов. В другом отдельно взятом случае, около гиперфокального расстояния, увеличение ГРИП проявляется, поскольку широкоугольные объективы имеют большую заднюю ГРИП и потому проще достигают приемлемой чёткости на бесконечности для любой заданной дистанции фокусировки.
Где она и что она делает?
Диафрагма находится в вашем объективе, не в корпусе фотокамеры. Отверстие объектива открывается и закрывается, чтобы контролировать количество света. Выбрав определенное значение диафрагмы, вы говорите объективу какое количество света должно попасть на матрицу.
Это очень похоже на то, как устроен человеческий глаз. Ваши зрачки расширяются и сужаются в соответствии с тем, сколько света присутствует в сцене. Например, когда вы входите в темный зал кинотеатра. Сначала вы ничего не видите, но затем ваши глаза настраиваются. Зрачки расширяются, позволяя вам увидеть столько света, сколько возможно в темной комнате.
Опять же, когда вы находитесь на улице в солнечный день, сначала свет слишком яркий. Ваши зрачки сужаются, впуская меньше света. Диафрагма объектива работает по тому же принципу. Изменение значение диафрагмы – это сужение или расширение зрачка.
Размер диафрагмы объектива измеряется в так называемых f-ступенях (диафрагменное число). Как и остальные настройки камеры, она имеет общий диапазон.
Запоминать числа необязательно
Важно видеть диапазон в настройках. Здесь есть хитрость; чем меньше диафрагменное число (например, f/1.8), тем больше открывается диафрагма
Это означает, что большее количество света попадет в отверстие объектива, и наоборот. Чем больше диафрагменное число (например, f/22), тем меньше откроется диафрагма, и меньше света попадет в объектив.
Принимайте диафрагменное число за дробь. Просто замените F с номером один. 1/4 пирога – это гораздо больше, чем 1/16 пирога.
Небольшое примечание: не все объективы устроены одинаково. Разные объективы имеют разную диафрагму. Некоторые имеют диапазон шире, некоторые – меньше. Стандартные объективы имеют диапазон f/3.5–f/22. Специальные же могут опускаться до числа f/1.2 и ниже.
Угол зрения объектива
Чтобы понять, что такое угол зрения объектива, из листа бумаги скрутите небольшую трубочку, сантиметра три в диаметре. Посмотрите через нее на окружающий вас мир.
Теперь обрежьте половину бумажной трубки и опять взгляните туда же и с того же места. Заметили разницу? Через короткую трубочку просматривается больше объектов. В данной ситуации длина трубки является имитацией фокусного расстояния объектива.
По такому же принципу работает и zoom, меняя угол зрения объектива. На языке профессиональных фотографов, широкоугольный объектив и есть аналог короткой трубки. А у длиннофокусного (телеобъектива) угол зрения всегда меньше.